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1. Introduction

In thispaper, we study the existence problem of optimal shape design for aparabolic
hemivariational inequality (P HV I') with ageneral cost functional of integral form.
In our formulation it is a control problem, where (PHV I) correspondsto a "state
equation” and the controls are sets from a family ©%> of admissible shapes (see
Section 2).

So the optimal shape design problem (O.SDP) is of the form:

Find Q* € Bandu* € S(Q*) such that

{J(Q*,u*) =min min J(Q,u), D)

QEBUES(N)

where controls belong to B, which is a bounded, closed subset of afamily 0%,
Here we use the mapping method, introduced by Murat and Simon in [15] and
[16], which provides us with an appropriate topology on B. The functions u are
taken from the set S(Q2) of the solutionsto (PHV I) which, in turn, is formulated
asfollows

findu € W such that
(0 (1), v=u(®)vs-+a(u(t) v=u(®)+ [ F(d), v=u(t)) do>
> (f(t),v—u(t))yvwy, VveV,aete(0]I),

2

u(0) = .

Abovea(-,-) isabilinear formon V' = H*(£2), and ;° denotes the Clarke's direc-
tional derivative of alocally Lipschitz function j : R — R whose subdifferential
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07 describes a nonmonotone, nonconvex and possibly multivalued law in ©2. The
existenceresult for (PHV I) was obtained by Miettinen [13].

In this paper we present an existence result for (OS D P) for systems governed
by (PHVI) (see Theorem 3). On one hand, our theorem generalizesto the case of
parabolic hemivariational inequalities, the result on similar optimal shape design
problems for variational inequality obtained by Liu and Rubio [12, Part 2]. On
the other hand, it extends to parabolic case the existence result for (OSDP) with
hemivariational inequality for elliptic case proved by Denkowski and Migorski [7].

For the applications of our result we refer to [ 18], where some temperature con-
trol problems in heat conduction are considered. These problems were originally
studied by Duvaut and Lions [5], where semipermeability relations of monotone
type led to systems governed by variational inequalities. In [18] some generaliza-
tions of these problems, with not necessarily monotone semipermeability relations,
are given. More precisely, the problem of regulating the temperature to deviate as
little as possible from the given interval is considered. In this case the system is
governed by a hemivariational inequality of parabolic type.

For optimal control problem for elliptic hemivariational inequalities, we refer to
related papers [9] and [14]. However, both these papers deal with the situation in
which the controls appear in the right hand side of the inequality and in the bilinear
form. The existence of optimal solutions is obtained and the relation between the
original problem and the finite dimensional oneisinvestigated.

The organization of this paper is as follows. In Section 2 we recall the notions
and basic facts on the mapping method, while in Section 3 we introduce some
functional spacesneeded in the sequel. In Section 4 we study (PHV'T) of theform
(1). For such problem we prove the closedness of the graph of the multifunction
B> Q — S(9) (insuitabletopologies), aswell as, we show someapriori estimates
for the solutions of (PHVI). This facts are crucia to get our main result on the
existence of solutionsto (OSD P) which is formulated and proved in Section 5.
Section 6 gives some final comments on the obtained result, shows some of its
applications and indicates the possible ways of its generalization.

2. The mapping method

In this section we recall notation and basic results on the mapping method which
were established by Murat and Simon in [15]. We keep the notation of [7].

Let C be abounded open subset of RV with aboundary 9C of classW >, i > 1
and such that int C' = C. Then, following [15], [12], [7], we introduce, for & > 1,
the following spaces

w2 RN, RY) = {p| D% € LR, RY) forall ,0 < |a] <k},
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where derivatives D¢ are understood in the distributional sense. By 0% we
will denote the space of bounded open sets of RY which are isomorphic with C,
i.e

Ok = {0 | Q =T(C), T € F&>},

where F#> jsthe space of regular bijectionsin RY defined by
Fho = {T:RV — RV | Tisbijectiveand T, T~ € VF>°},
yhoo — TRV 5 RV | T — T € Whe RN, RY)).

In other words F**> represents the set of essentially bounded perturbations (with
essentially bounded derivatives) of identity in RY . It can be seen (see [15]) that if
C has aW*:> boundary, then every set Q € ©%> aso has the boundary of class
Wk, Endowing the space W*>®(R" | R ) with the norm

1
2
2
IIsOIIk,oo:eSSSUP( > ID%IRN> ,

veRY \0<a|<k
we define on 0% x 0% afunction

R e

The mapping &y~ is a pseudo-distance on O*> since it does not satisfy the

triangle inequality (see Section 2.4 of [15]). From Proposition 2.3, Theorem 2.2
and Theorem 2.4 of [15], we have

THEOREM 1. Let k > 1. Then
(@) There exists a positive constant s, such that dy, ., defined by dj o =

\/Ok.00 A f1x iS@metric on O,

(b) The space ((’)k’oo, dk,oo) isa complete metric space.

(c) If k > 2, thentheinjection from ©*> into O* 1 is compact. More precisely,
if k > 2and Bisabounded (in &y, ), closed subset of O%°°, then for any sequence
{Q,} C B, there exist a subsequence {(2,,,,, } of {,,,} and a set Q € B such that
Qpy — Qin OF 10,

REMARK 1. It is known (cf. Section 2 in [15]) that ©,,, — © in O% iff there
exist T,,, and T in F*> such that 7,,,(C) = Q,, T(C) = Q and T;, — T,
Tt — T tinWke(RN,RY).

Some other facts on the mapping method, are summarized in the following
lemma.
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LEMMA 1. Let k£ > 1. Then

(@ IfT € FL>°,Q = T(C), thenu € L?(Q) iff uo T € L?(C); u € HY(R) iff
uoT € HY(C). Moreovey, if u,, — uin HY(Q) (or in HY(C)) and T € F*,
then u,, o T — uo T in HY(C) (O ty, o T~ = uwo T~ in H(Q)).

(b) Letu € H'(RV) with ! = 0 or 1. Then the mapping T — u o T is continuous
from V%> to H'(RV) at every point T' € F*>.

(c) The following mappings are continuous

T+ Jp* from VP to Wh=LoorV R2V),
T + detJr from VB to WhF=1o0(RV R)
at every point T e F* (.J; denotes here the standard Jacobian matrix of T').

For the proofs of (a) - (c) of the above lemma, werefer, respectively to Lemma4.1
(seedso[12]), Lemma4.4 (i) and Lemma4.3 and 4.2 of [15].

In what follows, we report on relationships between the convergence in O%»>
and other types of convergence of sets.

Let D be an open set of RV. By 1p we will denoteits characteristic function.

DEFINITION 1. By the Hausdorff complementary metric, we mean
d(Q1,Q2) =max | su inf |z —y|, su inf |z—y|]|,
(€21, 22) (xeD{)QlyeD\nz || || xeD{)QZyeD\m || ||>

and the topology given by this metric we will denote by H°.

REMARK 2. Let & > 1. Then
(i) 1f Q= QoinOF>® thenlg  — 1o, in L2(RV);
(i) 1f Qm — Qoin O8> andint C = C, then Q,,, 2 Qp.

The following important property of the H¢ convergence is the "covering" of
the compacts.

REMARK 3. If Q,, 75 Qo, then

VG CC Qo dmg €N . Vm >mg G C Q.

The following basic hypothesis will be needed in the next sections:

H(C,B): Cisabounded open setin RY with boundary of class
Wi i > 1 such that int C = C and B is a bounded
closed subset of O, withk > 3and1 < i < k.
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3. Definitionsand properties of some functional spaces

In this section we introduce some spaces of functions which will be useful in the
sequel. Let T be a positive number, H areal Hilbert space, V area Banach space,
and V' itsdual space. Supposethat V' C H,V isdensein H and |u| i < é|u|y for
any u € V,with ¢ > 0. Identifying H with its dual space, wehaveV c H c V'.
By (-,-)vxy We denote the pairing between V' and V. Let L?(0,I;V) be the
space of functions v from (0, I') to V, strongly measurable and square integrable
with the norm:

o2y = (/ Jo(t) ||th>

TheinclusionV ¢ H c V' implies L?(0,1; V) c L?(0,I; H) C L?(0,I;V'), as
[L2(0,I; V)] ~ L?(0,I; V') (see[11]). Let C(0, I; H) be the space of continuous
functionsfrom [0, I] to H with the norm

lvlcrm = sup o).
0<t<T
Forv € L?(0,1; V), denoting by v’ vector-valued generalized derivative, we define
the space
W(O,I;V) = {v: ve L?0,I;V), v' € L?(0,I;V')},

with the norm

ol o) = (/ PO @+ [ 1 ||V,dt)

ThespaceW (0, I; V') supplied withthenatural scalar product (generating theabove
norm) is the real Hilbert space, which is continuously embedded in C (0, I; H).

Some properties of the above functional spaces and their connections with the
mapping method, are given in the following lemmas (for the proofs see [12],
Section 2).

LEMMA 2. Let V be a subspace of H(Q). Suppose T'(C) = Q, T € F>*, and
put

V={voT:veV}cHYO).

Then the operator T : [ — fr, where fr(t,X) = f(t,T(X)), is an iso-
morphism from L?(0,1; V) to L?(0,1;V) and from W (0,1;V) to W(0,I;V).
Furthermore, we have

[ 0600y dt= [ (Frodridetsnl),, ®

for every f € W(0,I; V) and ¢ € L2(0,I; V), where dr(t, X) = ¢(t, T(X)).



304 L.GASINSKI

LEMMA 3. Let {Q,,} beasequenceof setsfrom 0>, let T,, € F*> besuchthat
T,(C) = Q, and uq, € W(0,1; HX(S)). If {Ju, w1 (.} iS bounded
and {Jr, }, {J;;'} are bounded in WL>°(RN;RY), then {|in |y (o,r:m1(cy } IS
bounded, where u, (t, X') = uq, (t,T(X)).

LEMMA 4. If f, f, € L>(RV*Y) and f,(t,z) — f(t,z) strongly in L?(RN+1),
andT, —T — 0, T,;} —T71 — 0in WL*(RN;RN), then f,(t,T,,(X)) —
f(t,T(X)) stronglyin L?(RN+1),

4. Hemivariational inequality with nonlinear law in Q

In this section we investigate a class of parabolic hemivariational inequalities with
nonlinear laws appearing in €.

L et © be an open, bounded subset of RY . Let usintroduce the following spaces:
V=V(Q) =HY(Q),H=H®) =L%2),Y = V() = L?0,;V), V' =
VI(Q) = L0, I; V'), H = H(Q) = L?(0,[; H), W = W(Q) = W(0,[;V) =
{v:vev, eV}

We supposethat a : V' x V — R isdefined by

a(u,v) Z/Q[(AVU,VU) + apuv] dz,

and satisfies the following hypothesis

H(a) : The noorm e : V x V. — R is a bilinear, continuous

- (.e |a(u,v)] < Mlu||v] for u,v € V with M > 0),
symmetric and coercive on V (i.e. a(v,v) > afv|? for
v € V with @ > 0 independent of 2), the matrix A €
[CERN)N AL (®RY)]V and ag € C(RY) N L=2(RV),
ao(r) > a>0ae inRY.

Adopting the notation of [7] for agiven 5 € Lj;.(R) we denote by B:R— 2% a
multifunction obtained from 3 by filling in the gaps at its discontinuity points, i.e.

BE) = [B(&), BE)],

where

B(§) = lim essinf 5(t), G(5) = lim esssupf(t)

- §—0F |t—€|<8 d—0t |t—¢|<6

and [-,-] denotes the interval. It is well known (cf. [2]) that a locally Lipschitz
function j: R — R can be determined up to an additive constant by the relation

i(€) = J§ B(s)ds and that 9;j(¢) C B(¢). Moreover, if B(¢ + 0) exist for every
¢ € R, then 95(¢) = B(€). Here 35: R — 2% denotes the Clarke's generalized
subdifferential of 5 (see[3]) given by

95(&) = {n eR|%&y) >0y, Yy eR} fordl & € R



OPTIMAL SHAPE DESIGN FOR HEMIVARIATIONAL INEQUALITY 305
The notation j°(-; -) stands for the Clarke's directional derivative defined by

(€)= limsup LEFPF T ZI(E+ D)
, h—0, 7,0 T

fordl &,y € R

We will also assume the hypotheses

H(p): Thefunction g € LiS.(R) issuch that
(i) p(£+£0)existsforeaché € R;
(i) thereexistsco > Osuchthat [3(£)] < co(1+ [¢]) for € € R.

H(f,):  feH®RY), ¢peHRY).

By an evolution hemivariational inequality we mean the following problem:

( find u € W such that
(W (£), 0 — u()) vy + a(u(t),o — u(t))
(PHVI) + /Q POut), v —u(®)) dz > (F(t),0 — u(t))vrxrs
VoeV, aete (0,1),
| u(0) =

The concept of solution to problem (PHV1) is specified below.

DEFINITION 2. An element ». € W is said to be a solution to (PHVI) if there
exists xy € H(2) such that

v) + a(u(t),v) + (x(t),v)
VveV, aete (0,1),
4

t ,z)) ae (t,z) € (0,I) x Q.

In the sequel, by S(€2) we denote the set of all solutionsto (PHV1).
The following existenceresult is due to Miettinen (see [13]).

THEOREM 2. If hypotheses H (a), H(3) hold and f € V', ¢» € H(RY), then
problem (PHVI) admits a solution, i.e. S(€2) # 0.

Due to the lack of convexity of 5 (or some additional growth condition on the
function 3, see [13]), no uniqueness result for (PHVI) can be obtained, so S(f2)
contains, in general, more than one element.
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To simplify the notation for w € V', f € H(RY) and u,v € V we put

T T
|y dt = [ o) o) de
0 0
T T
/Oa(u,v) dt = /0 A[(A(x)u(t,x),v(t,w)) + ao(z)u(t, z)v(t,z)] dz di,

/OI(f,v) dt — /()’/Qf(t,x)v(t,g:) dz dt.

Moreover for v € V, T € F*> instead of writing 4(t,z) = v(t,T(z)) for al
€ (0,I),wewritev =voT.
The following result will be crucial in the proof of the main theorem.

PROPOSITION 1. Let usassumethat H(C, B), H(a), H() and H(f, ) hold
Thenthemap B 5 Q — S(©2) C W has a closed graph in the following sense:
if Q,,Q € B, Q= Qo in OB, u,y € S(n), G = U © Ty, Uy, — ©*
weakly in W(C), then u* = ug o Ty for some ug € S(Qo), where Q,,, = T,,,(C)
and Qg = To(C).

Proof. We follow some ideas of Liu and Rubio [12], as well as, of Denkowski
and Migorski [7]. Let ©,,,Q9 € B be such that Q,, — Qo in O%>, where
Q= T, (C) and Qg = Tp(C). By definition T}, To € F*>° and T}, — Ty — O,
T, —T5t — 0in Whoo(RY RN ). Without loss of generality, we suppose that
detJy, > O0and detJr, > 0on RY. Let u,, € S(Qp), i€ uy € W and there
exists xm € H(Qy,) such that

( I
(U, (1), v)P(t) dt + | a(um(t),v)(t) dt + m(t),v)(t) di
[ ( / | un®, 00800
/ dt, YveV, YpeD((01I)), (5)
U (0) 0= an,
Xm(t, ) € 0j(um(t,z)) ae (t,z) € (0,1) X Q.

By using the transformation z = T,,,(X), and applying Lemma 2 we rewrite (5)
as the following equivalent problem on the set C":

I
/( dt-l-/ ar,, (U, 0 dt-l—/ (Xm,0) dt

_/ B dt, VaeV(C), YéeD(0I)), ©)

um (0, —w(Tm(X>) inC, 7
m(t,X) € 9j(iim(t, X)) ae (t,X) € (0,I)xC, ®
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Wheream = UmOme’z[Tm = AOTmJ/(\m = Xm©°Tm, fm = fOvaam = agoTn,
and

(), 7) = /C (¢, X)5(t, X)p(t) det Jr,, (X) dX,

oy, (i, ) = /C [(F52(X) A, (X) T (X) Vit (1, X), Vo (1, X))
-I—am(X)A (t,X)a(t,X)] $(t) det Jr,, (X) dX,

(%, / X) p{t) det.Jr,, (X) dX,

(fms ) X) ¢(t) det Jr, (X) dX.

We may consider & and ¢ in (6) to be fixed. Moreover, we know (see Lemma 2)
that %, € W(C) and Xm, fm € H(C).
Our goal is to pass to the limit, as m — +o0, in the problem (6)—8). By

hypothesis

U — u* weakly in W(C), 9)
i.€. Uy, — u* weakly in V(C) and

ar, — u* weakly in V'(C). (10)
From (9) and the compactness of the embedding W C #, we have

U — u* INH(C). (11)
On the other hand, by using H (53)(i7), from (8) we get

I
by = [ [ Rt 0P dx a

IN

I
203/ /(1+|am(t,X)|2) X dt
0 JC

ca(M(C) + [ [5yc)-

IN

Thus

[Xml3(cy < c2ly/M(C) + [tml3yc))s (12)

with ¢z = ¢2(co, I) > 0, where m(C') denotes the L ebesgue measure of the set C'.
Hence and from (11), after passing to a subsequenceif necessary, we have

Xm — X° weakly in H(C) (13)
with x* € H(C).
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By Lemma 4, we know that Fm = foin H(RN) = L2(0,I; L2(RN)) with
fo = f o To. It can be verified that

I I
/ (fm,0) dt — / (fo,0) dt. (14)
0 0

Indeed, we have

‘/Ol(fmﬁ) dt — /OI(ﬁJ,ﬁ) dt

I N I R
:‘/ / fmv¢ detJr, dX dt—/ / fovg det Jr, dX dt
0 JC 0 JC

I ~
< Il det Jr,, — det i) [ [ |Fn| aX at

+

I -~ ~
AL@r@%wmuﬁ

The first term on the right hand side converges to zero since the sequence { f,,, }
is bounded in #(C) and detJr,, — detJg, in L®(RY) (as a consequence of
Lemma 1(c)). The second term on the right hand side also tends to zero due to the
strong convergence of f,,, to foin H(C).

In an analogous way as we proved (14), we can show, using Lemma 1 and (13)
that

I I
| Gy dt = [ 9) . (15)
0 0
Subsequently, from the assumptions on the matrix A, we deduce that A(-) is

uniformly continuous on every bounded subset of RV . Since T;,, — To, T,,,* —
Totin Wk (C; RN ) and T,,, (C), To(C) arein abounded set of RV, we obtain

Ar, — Ag, in[L*(C)N.
Hence and from Lemma 1, we have

JptAr, J7t — IR AnJnt in[L(O)N (16)

ASa,, — Goin L®(RY ), where Gg = ag o Tp, o from the following inequality

I T
‘/ ar,, (Um,v) dt —/ ay (U, 0) di
0 0

I - ~
= /o /C ([t Ar, J5! = JptAr Jp!] Vi, Vo) ¢ det Jr,, dX dt
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I ~
+ /0 /c (JEO]-ATOJthVUmavv) ¢ [detJr,, — det Jp] dX dt

I
+//(am—ao)ama¢detJTm X dt
0 JC

I
+ / / Golinmdp (det T, — det ) dX di
0 JC

< 91 I9et7r, | oo e 117, Ay T,
- Jj_‘olA\TOJI_‘OtH ltm ey 19l
+ 1l 197, Ay I | |det T, — detTrg| [amlwey 18l (c
+ [ @] |detIz,, | ooz vy lam — ol oo @) [Tim ey 191y ()
+ |6 |detr,, — det Jiy| ;o vy [l oo ) m by 1
by taking (9), (16) and Lemma 1 into account, we get
I I
/0 ar,, (Gm, D) dt — /0 a1y (@, D) dt — 0. (17)
From the following inequality

I T
‘/ ar., (tim, 9) dt—/ o (D)
0 0

< +

I I
/ ar, (G, D) dt — / ar (i, ) di
0 0

+

bl

I I
/ ar (i, B) di — / ar, (u*,5) dt
0 0

by using (17) and weak-V continuity of the functionV > w — fOI a(w, ) dt (asit
islinear and strongly continuous), we obtain

I I
/ ar, (G, B) dt — / ar (u*, ) dt. (18)
0 0
Now, owing to (14), (15), (10), (18), we can pass to the limit in (6) and get
I I I
/(u*',a) dt+/ ary (u*, B) dt+/ (x*, 5) dt
0 0 0
I
= [ (Fo0) dt. Vo EV(C). VoED((OI). (19
0

In order to pass to the limit in (7) we observe that the operator W(C') > u —
u(0) € H(C) islinear and continuous (which is a consequence of the continuous
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embedding of W(C) inC(0, I; H(C))). Thereforeit is continuous with respect to
weak topologies and from (9) we have: ,, (0) — «*(0) weakly in H(C). On the
other hand, we have 1) (T, (X)) — 1 (To(X)) in H(RY), so from the uniqueness
of the weak limit, we get

u*(0,X) = p(To(X)) inC. (20)
By passing to subsequences, if necessary, from (11) and (13), we have

Um — u* aein(0,1) x C,

Xm — x* weakly in L1((0, 1) x C).

Since the multifunction 95(+) is u.s.c. with nonempty, convex and compact values
(see [3]), by exploiting the above convergences, and applying the convergence
theorem (see [1], p.273), we deduce from (8) that

x*(t, X) € 0j(u*(¢t, X)) ae (t,X) e (0,I)x C. (21)

Now we write down the problem (19)—21) in an equivalent form by employ-
ing the transformation X = T, *(z). To this end, we introduce functions ug =

u* o Tyt and xo = x* o Ty *. From the relations Jra(z) = I Ty () and
detJr, (Tp *(z)) - detJ,1(z) = Lae on RV (cf. respectively, Corollary 2.1 and
page V-7 of [15]), we have

'A(a> ¢ﬁ+/ a(uolt ¢ﬁ+/;m o) dt

/ v)pdt, YveV(Q), VoeD((0I)),
= on,

\XO(, )E&y(uO(t,w)) ae. (t,z) € (0,1) x Q.
Asitistruefor every ¢ € D ((0,I)), so we also have

(uo(t),v) + a(uo(t),v) + (xo(t),v) = (f(£),v),
VoveV(Q), aete(0,1),

(cf. e.g. [10] Chapter 11, or [8], Chapter IV, 4, Lemmal1.7). Sinceu* € W(C) and
X0 € H(Qo), from Lemma 2 we conclude that ug € S(Q0) and u* = ug o Tp. This
compl etes the proof of the proposition. O
We will also need the following lemma.

LEMMA 5. Let us assumethat H(C, B), H(a), H(8) holdand f € V', 4 € H.
If u € S(2), then the following estimate holds:

[uly < b (1+m(Q)) /M) (1 + M) + [P o) + ||f||V'(Q)) (22)

with constants b, d > 0 depending only on «, M, 1, ¢p, and not depending on €2.
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Proof. Let u € S(92). So there exists a function x € H(2) such that (4) holds.
Using H () (ii), we easily find that

)2y < c2 (L+M(Q) + Jul®)l ), BEEE (O,T), (29)

with ¢, > 0. It can be shown that:
t t
[ o) ds|<ea (Lem@) - (14 [ fu(s) e ds) . vee (D),
0 0
(24)

with ¢z > 0. Indeed, using H(p3)(iz) and Holder’s inequality, for an arbitrary
t € (0,1), wehave:

‘/Ot(x,u) ds| < c /Ot/g(1+ (s, z)|)|u(s, z)| dz ds

t t
=02//|u(8,:v)|d:v ds+cz//|u(3,x)|2 dz ds
0JQ 0JQ
t t
2
gcm/f-mm»\/ [ tuts, )2 da ds -z [ us) e ds

<es (@ m@) - (14 [ o)) ds)

Now, using integration by parts, coerciveness of the form a, Young'sinequality
(ab < $a®+ 502 for a, b, « > 0) and (24), for an arbitrary t € (0, T), we have:

1 1
Qnu(t)niz )= 514020

td1 b
- 0d32”u( I )ds—/(u<s) u()vy ds
t
= 0 —a( dS +/ LZ(Q) ds
t
+ O(f(s) u(s))vixv ds < a”“”LZ (0,t,V)

+es (14 m(Q)) - <1+ /0 () 2y ds)

+ ||f||L2 ov el 2oy

<- ”U”LZ 0t,V) +c3 (1+m(9))

t
+ s (L+ (@) [ 1)) d5 + 5l Boo oy

Hence, for ¢t € (0, I) we have:

1
SN 20y + S0,
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< ca [L+m(Q) + 1320, + 1£13]
+c3 (1+m(Q)) /0 t Ju($)[2(q ds. (25)
Using Gronwall’s inequality, we get:

[u(t) 2200y < o5 (14 M(Q) + [9125q, + IF13) es@mD), ¢ € (0,1)
(26)

so from (25), (26), we have:
[uly < e7 (1+ m(Q)) es@MD) (14 m(Q) + [$l ey + 1f 1) - (D)

Now, we estimate ||/||, as follows:

[ (Bl = sup (W (1), v)yrey
veV, vy =1
= sup [~a(u(t),v) = (x(£)0) 20y + (F(1),0)vruv ]
vEV,|v|v =1
< sp (ma(®),n)+  sp o (—(x(8),)120)
veV, vy =1 veV, vy =1
+ sup (f(t)av)V’XV
veV,|v|y =1
<M sp o u@)lvlvlv+ s X))ol
vEV,|v|v =1 veV,|v|y=1
+ sp |f @) lolv
veV,|v|y =1
< Mlu(®)lv + 2 (1+m(Q) + |u(®)|z)) + 1F Blve
< cglu(t)|v + a1+ m(Q)) + £ (),

where we used the continuity of the form a, the inequality (23) and the fact that
lu(®)] 120 < lu®) v (q)- Now, after integrating both sides of the aboveinequality,
we obtain:

[y < co (L4 m(Q) + uly + 1 flv), (28)
and using (27), we have:
[/ < 10 (1+M(Q)) s+ (14 m(Q) + ] 2(0) + [ F1v7) - (29)

From (28), (29) and the definition of the norm ||y, we get (22). O
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5. A shapeoptimization problem

In this section we consider the control problem governed by parabolic hemivaria-
tional inequality.

Let hypothesis H(C, B) hold. By .J we will denote the cost functional of the
form:

J(Q,u) = /OI/Q L(t,z,u) dz dt, (30)

and by optimal shape design problem we mean the following problem:

Find Q* € Band u* € S(Q*) such that
(OSDP) {

J(QF,u*) =min min J(Q,u).

QeEBuesS(N)
To obtain our main existence result for the solution of (OSDP), we need the
additional hypothesis

H(J): J isl.s.c. with respect to the local convergencein RV+1,

where the local convergenceis defined as follows (see [19]).

DEFINITION 3. Let D bean opensubset of RV and et ¢,,,, ¢ belocally summable
functions defined in RV . We say that ¢,, converges locally to ¢ in D if for any
compact subset G of D, we have: ¢, is defined and summable on G, at least for
m sufficiently large and |¢m — ¢ 1) = 0,@8m — +o00.

THEOREM 3. If hypotheses H (C, B), H (a), H(3), H(J) and H(f, 1)) hold, then
(OSDP) admits at least one solution.

Proof. We apply the direct method of the calculus of variations. Let (2,,,, u,,) bea
minimizing sequencefor (OS D P). From Theorem 1, as B is compact in O%~1:>,
we can choose a subsequence of Q,, (still indexed by m) and aset Q¢ € B
such that Q,, — Qg in ©%*~1_ This means that there exist T),,, Tp € Fk1Loo
such that Q,, = T (C), Qo = To(C) and Ty, — To — 0, T,,t — Tyt — 0in
kal,oo(]RN ’ ]RN).

Since u,, € S(2,,), from Lemmab, we have

[umlwe,n)
< b (14m(Qyy,)) edEHm@m) (1+m(9m)+||¢||L2(Qm)+||f||7{(9m)) -
(31)
From Remark 2, we have 1o, — 1q, in L?(RY) which gives, in particular,
)

that {m(£2,)} are bounded, so also {2, } ad {]f]q,,)} ae bounded.
Therefore from (31) we can see that {|um|,y(q,,)} liesin a bounded set in R.
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Putting @, = up, o T;, and using Lemma 3, we obtain that {|tm|,y} are
bounded. Thus, taking next subsequenceif necessary, we have

Um — u* weakly inW(C) (32

with somew* € W(C'). From Proposition 1we have u* = ugoTp and ug € S(Qo).
So the pair (Q0, uo) isadmissible for (OSDP).

Let 7, and u* denote the functions in W(R") obtained from %, and u*,
respectively, by extending them by zero outside C'. From (32) and the compactness
of the embedding W(C') C H(C'), we get

U — u* INH(RY).

So from Lemma 4, we also have

Uy — ug INH(RY), (33)
where
um(t,z), ifz ey,
um (t, ) =
0, if 2 € RV \ Qyp,,
UQ(t,:L"), if z € Qo
uo(t, ) =
0, if z € RN \ Qo.

On the other hand, from Remarks 2 and 3, we deduce that for any compact G in
O, thereisan m > 0 such that G C Q,, for al m > m¢. Now, from (33), we
can see that for any such G' we have |un, — uofz ) — 0, and, in consequence,

um — ug locally in RN+, Hence, due to the hypothesis H (.J), we conclude that
(Q0, up) solvesthe problem (OSDP). O

6. Commentsand applications

Asan application of (OSD P) governedby (PHV I) wewould like to mention the
semipermeability problemswhich werefirst studied by Duvaut and Lions (see[4])
for a monotone semipermeability relations and led to variational inequalities. The
generalizations of these problems (without assuming monotonicity) was studied
by Panagiotopoulos (see [18]) and led to hemivariational inequalities. Two main
classes of semipermeability problems may be considered: the interior and the
boundary semipermeability problems (see [4]). In the first class, for instance, we
seek afunction u such asto satisfy
ou

E—Auzf inQ x [0, 1],



OPTIMAL SHAPE DESIGN FOR HEMIVARIATIONAL INEQUALITY 315
with
f=F+Ff, —Fedj inQx][oI],

where 5 is a superpotential (in the sense of [18]) which can be of nonmonotone,
nonconvex type, possibly multivalued. Function « is also supposed to satisfy the
classical boundary condition

u=0 onodQ x [0, I],
aswell astheinitial condition
u|4=0 = uo.

For possible choices of j, werefereto [18] (pp 30, fig.1), where acontrol problem
of temperature regulation by thermostatic devicesis considered.

REMARK 4. Thetypical cost functional of theform (30) arisingin heat conduction
problems, hydraulics and electrostaticsis the following:

I
J(Q,u):/o /Q|u(x,t)—uo(:r,t)|2d:r dt.

Here ¢ denotes the time and u represents the temperature in the case of heat
conduction prablems, the pressure in hydraulics problems and the el ectric potential
in electrostatics.

The lower semicontinuity of the above functional with respect to the local con-
vergence was obtained by Denkowski and Migorski [6] (without employing the
methods used by Serrin [19]).

REMARK 5. Liuand Rubio[12, part 2] studied (O.S D P) for variational inequality
of parabolic type of the form

T
min/ /L(t,x,u) dz dt suchthat
QeB Jo Jo

(W' (t),v — u(t))yr v + a(u(t),v — u(t))
> (f(t),v —u(t))vxy, VYveK, ae te(0,1),

u(0) = 1,

where K is a closed, convex, nonempty subset of V. Theorem 3 extends their
result on existence of optimal shapesto the caseof (PHV I) with K = V. Inthis
extension the main difficulty consists in the fact that, in general, (PHV1) posseses
many solutions. Thisleadsusto theinvestigation of the closednessof themap which
to every admissible shape assigns the solution set of (PHV I) (see Proposition 1)
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REMARK 6. Itispossibleto consider the cost functional of the more general form

I
J(Q,u) =/ / L(t,z,u,Vu) dz dt.
0 JQ

The sufficient conditions for lower semicontinuity of the functional .J with respect
to the local convergence were given by Serrin in [19], for instance, the integrand
L(t,z,u,p) should be nonnegative, continuous in (¢, z, u,p) and strictly convex

inp.

REMARK 7. Another natural extension of our result leads us to the (PHV I) of
the form

(0 (1) + Au(t). 0 = ult) vy + [ )0 = u(t)) da
> (f(t),v —u(t)vixv, VYveV, ae te(0,I),

with a nonlinear operator A : V —— V. In this case the existence problem for
(OSDP) seemsto be open.

REMARK 8. In order to incorporate various unilateral conditions on €2 or on 052,
onehaveto study (OSDP) for (PHV T) considered in aclose, convex, nonempty
subset K of V. In this case the existence of solutions of (PHV I) is aso an open
problem (in [13] only the case K = V was studied).

REMARK 9. Similarly, we can deal with (OSDP) for (PHV I) where the non-
monotone, multivalued law is prescribed on the boundary of €2. The treatment of
such (PHV I) isanalogous to paper [7].
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